Oscillatory and steady laminar shear stress differentially affect human endothelial redox state: role of a superoxide-producing NADH oxidase.
نویسندگان
چکیده
Atherosclerotic lesions are found opposite vascular flow dividers at sites of low shear stress and oscillatory flow. Since endothelial proinflammatory genes prominent in lesions are regulated by oxidation-sensitive transcriptional control mechanisms, we examined the redox state of cultured human umbilical vein endothelial cells after either oscillatory or steady laminar fluid shear stress. Endothelial oxidative stress was assessed by measuring activity of the superoxide (O2.- )-producing NADH oxidase (a major source of reactive oxygen species in vascular cells), intracellular O2.- levels, induction of the redox-sensitive gene heme oxygenase-1 (HO-1), and abundance of Cu/Zn superoxide dismutase (Cu/Zn SOD), an antioxidant defense enzyme whose level of expression adapts to changes in oxidative stress. When cells were exposed to oscillatory shear (+/-5 dyne/cm2, 1 Hz) for 1, 5, and 24 hours, NADH oxidase activity and the amount of HO-1 progressively increased up to 174+/-16% (P<0.05) and 505+/-111% (P<0.05) versus static conditions, respectively, whereas levels of Cu/Zn SOD remained unchanged. This upregulation of HO-1 was completely blocked by the antioxidant N-acetylcysteine (NAC, 20 mmol/L). In contrast, steady laminar shear (5 dyne/cm2) induced NADH oxidase activity and NAC-sensitive HO-1 mRNA expression only at 1 and 5 hours, a transient response that returned toward baseline at 24 hours. Levels of Cu/Zn SOD mRNA and protein were increased after 24 hours of steady laminar shear. Furthermore, intracellular O2.-, as measured by dihydroethidium fluorescence, was higher in cells exposed to oscillatory than to laminar shear. These data are consistent with the hypothesis that continuous oscillatory shear causes a sustained activation of pro-oxidant processes resulting in redox-sensitive gene expression in human endothelial cells. Steady laminar shear stress initially activates these processes but appears to induce compensatory antioxidant defenses. We speculate that differences in endothelial redox state, orchestrated by different regimens of shear stress, may contribute to the focal nature of atherosclerosis.
منابع مشابه
Role of xanthine oxidoreductase and NAD(P)H oxidase in endothelial superoxide production in response to oscillatory shear stress.
Oscillatory shear stress occurs at sites of the circulation that are vulnerable to atherosclerosis. Because oxidative stress contributes to atherosclerosis, we sought to determine whether oscillatory shear stress increases endothelial production of reactive oxygen species and to define the enzymes responsible for this phenomenon. Bovine aortic endothelial cells were exposed to static, laminar (...
متن کاملFlow pulsatility is a critical determinant of oxidative stress in endothelial cells.
Atherosclerotic plaques are found in regions exposed to disturbed flow, suggesting the active participation of the hemodynamic environment in atherogenesis. Indeed, unidirectional and oscillatory flow patterns (ie, bidirectional) have been shown to induce contrasting effects on endothelial function. The purpose of the present study was to evaluate the effect of these 2 flow patterns characteriz...
متن کاملRedox signaling in hypertension.
Diseases such as hypertension, atherosclerosis and diabetes are associated with vascular functional and structural changes including endothelial dysfunction, altered contractility and vascular remodeling. Cellular events underlying these processes involve changes in vascular smooth muscle cell (VSMC) growth, apoptosis/anoikis, cell migration, inflammation, and fibrosis. Many stimuli influence c...
متن کاملOscillatory shear stress stimulates endothelial production of O2- from p47phox-dependent NAD(P)H oxidases, leading to monocyte adhesion.
Arterial regions exposed to oscillatory shear (OS) in branched arteries are lesion-prone sites of atherosclerosis, whereas those of laminar shear (LS) are relatively well protected. Here, we examined the hypothesis that OS and LS differentially regulate production of O2- from the endothelial NAD(P)H oxidase, which, in turn, is responsible for their opposite effects on a critical atherogenic eve...
متن کاملIdentification of vascular endothelial genes differentially responsive to fluid mechanical stimuli: cyclooxygenase-2, manganese superoxide dismutase, and endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar shear stress.
Early atherosclerotic lesions develop in a topographical pattern that strongly suggests involvement of hemodynamic forces in their pathogenesis. We hypothesized that certain endothelial genes, which exhibit differential responsiveness to distinct fluid mechanical stimuli, may participate in the atherogenic process by modulating, on a local level within the arterial wall, the effects of systemic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation research
دوره 82 10 شماره
صفحات -
تاریخ انتشار 1998